
Eur. Phys. J. C 49, 973–981 (2007) THE EUROPEAN
PHYSICAL JOURNAL C

DOI 10.1140/epjc/s10052-006-0172-8

Regular Article – Theoretical Physics

Fixed twist dynamics of SO(3) gauge theory
A. Barresi1, G. Burgio2,a

1 IDS Laboratories, S. Piero a Grado, Italy
2 Institut für Theoretische Physik, Tübingen, Germany
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Abstract. We perform a thorough study of 3+1-dimensional SO(3) LGT for fixed-twist background. We
concentrate in particular on the physically significant trivial and 1-twist sectors. Introducing a Z2 monopole
chemical potential the 1st order bulk transition is moved down in the strong coupling region and weakened
to 2nd order in the 4-dimensional Ising model universality class. In this extended phase diagram we gain
access to a confined phase in every fixed-twist sector of the theory. The Pisa disorder operator is employed
together with the Polyakov loop to study the confinement–deconfinement transition in each sector. Due to
the specific properties of both operators, most results can be used to gain insight in the ergodic theory, where
all twist sectors should be summed upon. An explicit mapping of each fixed-twist theory to effective positive
plaquette models with fixed-twisted boundary conditions is applied to better establish their properties in the
different phases.

1 Introduction

It is common knowledge from lattice investigations that
Yang–Mills theories possess a finite temperature transition
from a confined to a deconfined phase [1, 2] linked to the
spontaneous breaking of center symmetry [3, 4]. For SU(2)
such a transition is 2nd order and therefore in the univer-
sality class of Ising 3-d [5]. The alleged preferential role
that the discretization in the fundamental representation
plays in such result has been widely discussed in the liter-
ature (see e.g. [6]).
The difficulties connected to the use of the adjoint dis-

cretization, which according to universality should deliver
the same results as the fundamental one for the observ-
ables which have a common representation, have been
widely discussed for a long time and are partially un-
derstood [7–10]: the theory exhibits a bulk transition
along the adjoint coupling linked to the condensation of
Z2 magnetic monopoles, whose Dirac strings correspond
to open Z2 magnetic vortices; at the same time it was
pointed out how the introduction of ad hoc chemical po-
tentials could affect the phase diagram and give access
to the continuum limit in the weak coupling phase [9–
11]. Interestingly enough, such topological defects proved
also to be the key to a further understanding of the prop-
erty of the adjoint discretization: in the phase where Z2
monopoles condense the SO(3) partition function with pe-
riodic boundary conditions (b.c.) should be equivalent to
the sum of SU(2) partition functions with all possible
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twisted b.c. [12–14]. In the center blind adjoint discretiza-
tion maximal ’t Hooft loops are therefore physical topo-
logical excitations rather than boundary constraints as in
the fundamental one [12, 14, 15]. First attempts to simu-
late the modified pure adjoint theory proposed in [9–11]
were performed in [16–20]. Due to the absence of a suit-
able order parameter the authors had to rely on thermo-
dynamic quantities, making the study of the finite tem-
perature phase transition and its continuum limit quite
demanding [20]. Moreover, it was observed that for small
chemical potential and on top of the bulk transition the
theory exhibits states where the adjoint Polyakov loop
LA =−1/3 [16, 18]. In [15] it was pointed out how such a
phase actually corresponds to the non-trivial twist sectors
of the theory upon which the partition function should be
summed, the analysis in [20] neglecting such aspect. High
barriers in the weak coupling phase among such different
topological sectors make an ergodic sampling of the parti-
tion function very difficult already for small volumes [15],
leaving the problem of the behavior of the full adjoint
theory open. It was only recently that consistent efforts
through parallel tempering have led to first results in the
ergodic theory [21–23].
In a series of papers [24–29] the analysis of the trivial

twist sector was developed by studying the spatial distri-
bution of the fundamental Polyakov loop LF [26] and the
Pisa disorder operator [28]. In this paper we will refine and
extend such results to the SO(3) dynamics of both trivial
and non-trivial twist sectors. In particular, in [15] it was ar-
gued that any configuration generated by an adjoint weight
at fixed twist could be “gauge fixed” to a configuration
kinematically equivalent to a fundamental positive plaque-
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tte model [30] with corresponding twisted b.c.; whether
a corresponding effective action can be written is however
an open question. In Sect. 3 for each fixed-twist sector an
explicit mapping to such positive plaquette model config-
urations will be given. This enables us to define a non-
vanishing LF and determine the properties of the decon-
finement phase transition at fixed twist with “standard”
methods. The intrinsic limitations of such a procedure will
be also discussed. The interest of our extensive fixed-twist
analysis will be made clear in Sect. 4: fixed-twist results can
deliver “low cost” information on the ergodic behavior of
some observables in regimes hard to investigate with the
full SO(3) partition function [22, 23].

2 Action and observables

We shall study the adjoint Wilson action modified by a Z2
monopole suppression term:

S = βA
∑

P

(
1−
TrAUP
3

)
+λ
∑

c

(1−σc) , (1)

where UP denotes the standard plaquette and TrA =
2Tr2F− 1. The product σc =

∏
P∈∂c sign(TrFUP ) taken

around all Nc elementary 3-cubes c defines the Z2 mag-
netic charges. The action (1) is center blind in the entire
βA–λ plane (Fig. 1) [26]. The densityM = 1−

〈
1
Nc

∑
c σc
〉

tends to one in the strong coupling region (phase I) and
to zero in the weak coupling limit (phase II). In the λ–βA
plane such phases are separated by a bulk phase transition
whose order weakens from the strong 1st order at λ = 0,
βA � 2.5 to 2nd as λ increases [9, 20, 26]. For low βA the
theory can be shown to be dual to a 4-d Ising model [9], the
bulk line terminating at λ� 0.92.
As already anticipated, maximal ’t Hooft loops can be

generated dynamically in such an adjoint theory, since pe-
riodic b.c. on the adjoint fields automatically include all

Fig. 1. βA–λ plane. The bulk transition is shown together with
the finite temperature lines as found at trivial twist in [26, 28]

twisted b.c. for their fundamental representatives. Appro-
priate twist observables can be introduced through

zµν ≡
∑

ρσ

1

NρNσ

∏

P∈µ−ν plane

signTrFUP (ερσµν = 1) .

(2)

Like the Z2 monopoles, such observables are center
blind [15, 26]. In [13, 14] it was shown how the constraint
σc = 1, identically satisfied in phase II, assures us that zµν
in (2) can only take the values ±1; moreover the partition
function generated by the action (1) should be equivalent
to the sum of all partition functions generated with the
fundamental action and twisted b.c. Since at finite tem-
perature the production of non-trivial space-like twists (µ,
ν �= 4) will be exponentially suppressed; we can concen-
trate on time-like twists zi4 (i= 1, 2, 3). We will denote the
different twist sectors z simply by counting the number of
non-trivial twists in the various directions. Since, as antic-
ipated, tunnelling among them is strongly suppressed, one
simply needs to choose appropriate initial conditions and
employ a local update algorithm (standard Metropolis)
within phase II to keep the twist sectors fixed.
A further observable which can be measured at fixed

twist is the Pisa disorder operator [31], motivated by the
dual superconductor scenario for the QCD vacuum [32–34].
Its construction in the case of the SO(3) at non-trivial
twist follows the same lines as in the trivial twist case [28].
The magnetically charged operator µ shifts the quantum
field at a given time slice by a classical external field corres-
ponding to an Abelian monopole, with the U(1) subgroup
of the gauge group, which defines the magnetic charge,
selected by an Abelian projection usually fixed by diago-
nalizing an operator X in the adjoint representation. As
in [28] we will work with the random Abelian projection
(RAP) introduced in [35].
The disorder parameter is defined as

〈µ(t)〉=

∫
(DU)Me

−SM (t)

∫
(DU)e−S

, (3)

where SM(t) denotes the Wilson action with the space-
time plaquettes Ui4(x, t) at a fixed time slice t modified by
an insertion of an external monopole field:

Ũi4(x, t) = Ui(x, t)Φi(x+ î,y)U4(x+ î, t)

×U†i (x, t+1)U
†
4 (x, t)) , (4)

where Φi(x,y) = Ωe
iTab

a
i (x−î,y)Ω†, with Ω the gauge

transformation which diagonalizes the operator X. Ta de-
note the generators of the Cartan subalgebra and b the
discretized transverse field generated at the lattice spatial
point x by a magnetic monopole sitting at y. It should
be stressed that only the plaquette contribution to the ac-
tion (1) is modified by the insertion of the monopole field
and not the chemical potential term λ. From the defin-
ition of µ it can be shown that a monopole field is added
at time slice t+1 by using a suitable change of variable.
Iterating the procedure it can be proved that µ effectively
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corresponds to an operator which at time slice t creates
a monopole propagating forward in time until it is annihi-
lated by an antimonopole at t+∆t. The correlation func-
tionD(∆t) = 〈µ̄(y, t+∆t)µ(y, t)〉 describes the creation of
a monopole at (y, t) and its propagation from t to t+∆t.
At large ∆t, by cluster propertyD(∆t)�A exp(−M∆t)+
〈µ〉2. 〈µ〉 �= 0 indicates spontaneous breaking of the U(1)
magnetic symmetry and hence dual superconductivity. In
the thermodynamic limit one expects 〈µ〉 �= 0 for T < Tc,
while 〈µ〉= 0 for T > Tc, if the deconfining phase transition
is associated with a transition from a dual superconduc-
tor to the normal state. At finite temperature there is
no way to put a monopole and an antimonopole at large
distance along the t-axis as it is done at T = 0, since at
T ∼ Tc the temporal extent Nτa is comparable to the cor-
relation length. Therefore, one measures directly 〈µ〉 but
with C∗-periodic b.c. in time direction imposed to the
numerator in (3) in order to ensure magnetic charge con-
servation, Ui(x, Nτ ) = U

∗
i (x, 0), where U

∗
i is the complex

conjugate of Ui, in the following indicated by a suffix M
in the observables. They effectively create a dislocation
with magnetic charge −1 at the boundary which annihi-
lates the positive magnetic charge created by the operator
µ. An analogous condition holds also for link variables de-
fined in the adjoint representation, i.e. Ui(x, Nτ ) = (I3+
2T 22 )Ui(x, 0)(I3+2T

2
2 ); charge conjugation is realized in

both representations through rotations by an angle π
around the color 2-axis. The adjoint representation makes
moreover clear how C∗ b.c. are up to a gauge transform-
ation equivalent to twisted b.c. and therefore “natural” in
our adjoint theory.
A technical difficulty is that, since 〈µ〉 is the aver-

age of the exponential of a sum over the physical vol-
ume, it is affected by large fluctuations which make it
difficult to measure in Monte Carlo simulations. A way
out is to compute the derivative with respect to the
coupling parameter β (i.e. βA), ρ =

d
dβ log〈µ〉 = 〈Π〉S −

〈ΠM 〉SM , which yields all the relevant information on
µ. It is the difference between the Wilson plaquette ac-
tion term Π averaged with the usual measure and the
modified plaquette action term ΠM averaged with the
modified measure (DU)Me

−SM /
∫
(DU)Me

−SM . The order
parameter itself can in principle be reconstructed from
〈µ〉= exp

( ∫ β
0
ρ(β′)dβ′

)
. ρ should vanish in the thermody-

namical limit for β < βc if 〈µ〉 �= 0. A sharp negative peak
for ρ diverging in the thermodynamical limit should signal
a phase transition associated with the restoring of the dual
magnetic symmetry, while above Tc ρ should show negative
plateaus diverging with the volume to ensure 〈µ〉= 0.

3 Symmetry transformation

The absence of a “cheap” order parameter like LF has been
one of the major obstacles in determining the properties of
SO(3) at fixed twist [20, 26, 28].We here solve this problem
by explicitly constructing the mapping suggested in [15]
between the SO(3) theory at fixed twist and configurations
classified by some positive plaquette model [30]. The con-

straint σc = 1 identically satisfied in phase II is key to the
existence of such a mapping: in spite of the center blindness
of the action (1), it makes the signs of the fundamental pla-
quettes no more completely random. A further constraint
is given by the value of zµν , where all parallel planes con-
curring to it in (2) must be equal due to the σc = 1 con-
dition. In the case of trivial twist, for example, this will
force first of all every 3-cube to have an even number of
negative plaquettes, which will therefore be either paral-
lel or will have a link in common. Furthermore, every 2-d
plane must also have an even number of negative plaque-
ttes. Therefore, the allowed configurations must consist of
a superposition of two possible situations: an even num-
ber of negative stacks of plaquettes Pµν in all parallel µ–ν
planes; or a set of negative plaquettes Pµν , Pµρ joined by
a common link Uµ, which must always occur in pairs in
both the µ–ν and the µ–ρ plane. In the case of non-trivial
twist the situation is similar, with the only difference that
the number of negative plaquettes in certain planes will
now be odd.
As an illustration, take a configuration arising from

a simulation at Ns =Nτ = 4 (Figs. 2a–c and 3a–c; Ns be-
ing the spatial length of the lattice). By flipping the sign of
a generic link six plaquettes will be affected while obviously
σc and zµν will remain unchanged. One can therefore start
to sweep the whole lattice changing first the sign of some
links so as to make all plaquettes in the x–y plane positive
(Figs. 2d–f and 3d–f). One can now proceed with a second
sweep which makes all plaquettes in the x–z plane posi-
tive by leaving the xy untouched, i.e. by flipping only the
z and t links. Figures 2g–i and 3g–i now illustrate clearly
the situation: only pairs of plaquettes which can be made
positive by a t link flip are present. For non-trivial twist
the procedure will be the same, with the only difference
that of course at the end a stack of plaquettes ensuring
zµν =−1, i.e. twisted b.c., must remain. Such a procedure
provides us with a kinematic identification of adjoint con-
figurations with a positive plaquette model (with periodic
or twisted b.c.); it is not a dynamical mapping to a posi-
tive plaquette action of the type given in [30], since we still
generate our fields with an adjoint center blind weight. In
some sense it amounts to a “gauge fixing” which removes
the local Z2 freedom intrinsic to the adjoint weight; an-
other choice, e.g. all negative plaquettes, could have been
equally made. Since no dynamical identification is possible,
the positive plaquette fields we obtain will not be identical
to the one generated through the action given in [30]. They
might however exhibit similar scaling properties. For each
configuration generated in theMCwith weight given by (1)
we have applied the above algorithm to obtain a config-
uration where the fundamental observables do not vanish
identically when averaged over the volume, although they
should be interpreted as gauge dependent observables in
a gauge fixed theory.
We can now measure LF and its susceptibility in all

fixed-twist sectors of the adjoint theory and use it as
an order parameter to determine the critical exponents.
Although in [36] an alternative definition of LF modi-
fied via a twist eater at the boundary has been used
for the fundamental theory with fixed-twisted b.c., we
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Fig. 2. Suppression of the negative plaquettes in the trivial twist sector

Fig. 3. Suppression of the negative plaquettes in the non-trivial twist sector

have chosen to stick to the standard definition for a num-
ber of reasons. From a purely formal point of view, for
the full adjoint theory reflection positivity can only be
invoked for adjoint Polyakov loop correlators, ensuring
their positivity irrespective of the twist sector; in other
words such quantities are invariant also under large, twist
changing gauge transformations and should be considered
the “fundamental” ones. Since we wish to maintain the
property TrA = 2Tr

2
F−1 also for the local Polyakov loop

L(x) =
∏Nτ
t=0 U4(x, t), so as to keep the volume average of

LA proportional to the second moment of the spatial dis-
tribution of LF, to ensure the correct behavior under gauge

transformations we are forced to keep the standard defin-
ition of LF. From a practical point of view, our algorithm
does not pick a particular representative of the homotopy
class ensuring the fixed b.c. corresponding to the twist sec-
tor chosen. One would need to further fix the single links
throughout the lattice to have b.c. representable through
some specific twist eater at the boundary. The definition
in [36] is therefore not easily applied to configurations de-
rived from an adjoint weight at a fixed-twist sector. We
think however that there is no real problem underlying
such an ambiguity, since measuring LF at non-trivial twist
is anyway an unphysical procedure. No fermion fields, not
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even in the limit of infinite mass, can be present with
twisted b.c., so that no real physical interpretation can be
given to LF and its correlators at non-trivial twist.

4 Fixed twist versus ergodic simulations

For the adjoint theory in phase II, the twist sectors z being
well defined, the ergodic expectation value of any observ-
able O can be always re-expressed through

〈O〉erg =

∑3
i=0〈O〉|z=iZSO(3)|z=i∑3

i=0 ZSO(3)|z=i
, (5)

where 〈O〉|z=i is the expectation value of the observable
restricted to the fixed-twist sector z = i.
In general in the absence of an ergodic algorithm the

relative weights of the partition functions ZSO(3)|z=i re-
main unknown, although there is of course at least one
case in which (5) is of use in a fixed-twist analysis, namely
when 〈O〉|z=i � 〈O〉 ∀i, i.e. the observable is independent
of the twist sector; in such a case it will obviously be
〈O〉erg � 〈O〉.
The ratio of partition functions could in principle

be estimated from the behavior of the vortex free en-
ergy [12, 14, 36–39], leading to

ZSO(3)|z=i
ZSO(3)|z=j

� cij (6)

in the confined phase, while in the (deep) deconfined phase
T � Tc

ZSO(3)|z=i
ZSO(3)|z=j

� cije
−
σ̃N2s
T (i−j) , (7)

σ̃ being the dual string tension, and the coefficients cij tak-
ing the values

cji = c
−1
ij , cii = 1 , c10 = c20 = 3 ,

c21 = c30 = 1 , c31 = c32 =
1

3
. (8)

This is quite straightforward to see: the action cost to
create (i− j) maximal ’t Hooft loops being strictly zero in
SO(3), the free energy to tunnel twist sector from i to j will
simply be given by the entropy change

∆Fij =−T∆Sij =−T log
ZSO(3)|z=i
ZSO(3)|z=j

. (9)

This on the other hand will be dictated in the deconfined
(confined) phase by an area (perimeter) law through the
dual string tension, i.e. ∆Fij = 0 for T < Tc and ∆Fij =
T σ̃N2s (i− j) for T � Tc. The factors cij are due to the
counting of states on a 3-torus topology, as indeed the ex-
istence of twist states with z > 1 in the first place. In other
words, on T 3×S1 there is one z = 0 twist state, three inde-
pendent z= 1 and z = 2 states and one z= 3 state, while on
S3×S1 there is only one z = 0 and one z = 1 twist state.

In the thermodynamic limit Ns→∞ all twist states
should therefore be equivalent in the confined phase with

〈O〉erg =

∑3
i=0〈O〉|z=ici0

8
, (10)

while all the non-trivial (z > 0) states will be exponentially
suppressed above Tc with

〈O〉erg = (1+e
−
σ̃N
s2
T )−3

3∑

i=0

〈O〉|z=ici0e
−
σ̃N2s
T i, (11)

so that, if the 〈O〉|z=i are bounded (or diverge less than ex-
ponentially) forNs→∞, then obviously 〈O〉erg � 〈O〉|z=0.
This will hold of course if 〈O〉|z=i � 0 ∀i �= 0.
There are however some difficulties with this standard

picture. The vanishing of the dual string tension is just
a sufficient and not a necessary condition for the existence
of a confined phase, which on the other hand only assures
that the deconfined behavior in the regime T � Tc will nec-
essarily obey (11). No result was actually available in the
literature for the confined phase of the ergodic SO(3) un-
til the studies in [21–23] appeared, which however point to
a behavior of the center blind adjoint discretization differ-
ent from that of the the fundamental one.We will therefore
avoid to use (10) in the interpretation of the results. This
will however turn out not to be a major problem, most
observables of interest resulting independent of the twist
sector below Tc.

5 Results

5.1 The Pisa disorder operator

The analysis of ρ in the trivial twist sector has already
been carried out in [28] for different Nτ . In Fig. 4a we
show the behavior of ρ for chemical potential λ= 1.0 at
Nτ = 4 in the non-trivial twist sector. The similarities with
the trivial twist case end with the peak which should sig-
nal the transition (βcA = 0.95). Above β

c
A ρ vanishes, in

contrast to the strong diverging plateaus seen at trivial
twist [28]. The transition at non-trivial twist therefore can-
not correspond, strictly speaking, to a deconfined phase.
We shall try to better understand this through the analy-
sis of other observables. A consistency FSS analysis taking
the value βcA = 0.95 and the critical exponents of the 3-
d Ising model is shown in Fig. 4b. We will comment on
its quality in Sect. 5.2. One thing we would like to stress
here is that such a vanishing of ρ poses no problem in the
ergodic theory. Given the behavior at trivial twist, (11)
ensures us that the Pisa disorder parameter will indicate
deconfinement at high β, provided that there exists a di-
verging peak at some βcA. Since the peaks in the trivial
and non-trivial twist sector occur at slightly different βcA
(βcA = 0.98 for z = 0, cf. [28] and the following section),
this latter question can only be answered by a full ergodic
simulation [23]. The situation at low β is slightly more
complicated. Although in all twist sectors ρ assumes a con-
stant bounded small negative value ρ�−k [28], therefore
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Fig. 4. ρ computed in the non-trivial twist sector at finite temperature (Nτ = 4) for different values of the spatial volume a.
Finite-size scaling analysis for ρ b

indicating 〈µ〉 �= 0 also for the full ergodic theory, i.e. con-
densation of monopoles and confinement in the low β re-
gion, the fact that it does not seem to strictly vanish in the
thermodynamic limit might pose a conceptual problem: for
every fixed Nτ 〈µ〉 can be redefined post hoc to assume
a constant value through exp(kβcA(Nτ )), but this rescal-
ing factor will necessarily diverge for SU(N) like Nαkτ , up
to logarithmic corrections depending on the higher order
coefficients of the β-function, with α= 2β0(N

2−1)/N , β0
being its first coefficient. This might on the other hand be
a conceptual obstacle in defining 〈µ〉 in the continuum limit
Nτ →∞, although α is just � 1.4 for SU(2).

5.2 LF and the interquark potential

Figure 5a and b shows the behavior of LF and its suscep-
tibility in the trivial twist sector after the mapping to the

Fig. 5. LF a, its susceptibility χ b

positive plaquette model at λ= 1.0 for Nτ = 4. In Fig. 6a
and b we perform a FFS analysis with the Ising 3-d critical
exponents and our best estimate βcA = 0.98, which agrees
with the result in [28] obtained through ρ. This is con-
firmed in Fig. 7a and b, which shows LF and χ at λ= 1.0
for Nτ = 6. Again, our results are in agreement with the
estimate βcA = 1.19 from ρ in [28].
The non-trivial twist sector offers more material for

discussions. Figure 8a and b shows LF and χ at λ = 1.0
for Nτ = 4. LF rises at first above the “transition” (with
LA also positive) to then tend to zero in the high βA
limit, as expected from the known behavior LA→−1/3.
Such behavior is not that of a standard deconfining the-
ory, due to the non-trivial background introduced by the
non-trivial twist. The determination of βcA is more difficult,
our best estimate remaining thus the one from ρ obtained
in Sect. 5.1. In light of such problems and given the worse
signal to noise ratio at non-trivial twist the comparison of
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Fig. 6. Quality of scaling for LF a and for χ b

Fig. 7. LF a and its susceptibility b

Fig. 8. LF a and its susceptibility b in the non-trivial twist sector
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Fig. 4b with the scaling figures for ρ in [28] is not bad. Com-
pare also such a result with the indubitably better scaling
obtained here in Fig. 6 to have a measure of the intrinsic
difficulties in performing precision measurements with ρ.
Figures 9 and 10 perhaps illustrate the situation better.
There we have calculated the interquark potential from LF
correlators at λ= 1.0, Nτ = 4, Ns = 16 for both twist sec-
tors at various temperatures as a function of the distance.
We have chosen to keep lattice units throughout since con-
trary to the fundamental case no result exists for the non-
perturbative scaling of adjoint models, e.g. through preci-
sion measurements of the string tension. Below Tc (upper
curve in both figures) both trivial and non-trivial twist
show still a (slowly) linearly growing potential. The growth
of V (r) is moderate as expected, since the string tension
should get dampened like σ(T ) = σ

√
1−T 2/T 2c when ap-

proaching a 2nd order transition, i.e. roughly by a factor
60% at the value T = 0.92Tc chosen. Above Tc the situation
changes. In the trivial twist case the long range interactions
die very fast above Tc, having disappeared at T � 2Tc,
which corresponds to a lattice spacing roughly half of that

Fig. 9. q–q̄ potential from LF correlators at trivial twist

Fig. 10. q–q̄ potential from LF correlators at non-trivial twist

at Tc. In the non-trivial sector however they persist quite
consistently, so that it is not clear whether one can speak
of deconfinement in the common understanding. The long
range interactions are minimal (in lattice units) at T � 2Tc,
roughly coinciding with the peaks in LF and its suscepti-
bility, to rise then again: at T � 4Tc (which corresponds
to 25% of the Tc lattice spacing) they have a strength in
lattice units similar to that at T � Tc. Of course, finite
volume effects will start to be considerable at such rela-
tively high βA values, so that a full analysis would imply
going to a much larger Ns. The difference in qualitative
behavior between Figs. 9 and 10 remains anyway strik-
ing. To conclude, Fig. 11 shows (again in lattice units) the
fundamental string tension estimates in both twist sectors
from (fundamental) Creutz ratios at T = 0 (164), λ= 1 and
βA = 0.98. Comparing with the value a

2σ� 0.140 obtained
in the fundamental case at T = 0 for β � 2.29, i.e. the coup-
ling corresponding to Tc forNτ = 4, one has the impression
that our positive plaquette model representation of the ad-
joint theory has no dramatic scaling discrepancies with the
standard fundamental theory. It would be interesting to
recheck these non-trivial twist results either with the stan-
dard Wilson action or with a genuine positive plaquette
model, of course with twisted boundary condition in both
cases. Also the alternative definition of LF given in [36]
would be worth to explore. To our knowledge, although
twisted b.c. have been used in the literature, no compara-
ble result to those given here is available.
Fixing a non-trivial background through twist sectors

leads then to theories which are not equivalent to the stan-
dard one. While having a similar dynamics below Tc they
will not show the standard deconfining behavior at high
temperature. As discussed in Sect. 3 there is of course
a problem in the interpretation of the non-trivial twist
sector: even though as we have shown in the “confined”
phase one can formally define an interquark potential and
through it a fundamental string tension, there is actually
no way to couple the gauge fields to fermions at finite tem-
perature with twisted b.c. The twisted adjoint theory, con-
trary to the untwisted one, cannot therefore be considered

Fig. 11. String tension estimate for Ns =Nτ = 16, βA = 0.98
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equivalent to a standard fundamental Yang–Mills theory.
LF and its correlators cannot therefore be related to the
static potential of quarks. One should therefore not read
much in their unusual behavior.

6 Conclusions

In this paper we have studied the pure adjoint SU(2) the-
ory in the trivial and non-trivial twist sectors. We have
been able to establish the properties of the different phases
analyzing the Pisa disorder operator; through an explicit
kinematic mapping to different positive plaquettes models
with corresponding boundary conditions, we have also
studied the behavior of LF. While the adjoint theory in
the trivial twist sector can be considered equivalent to the
standard SU(2) gauge theory, the twisted theories show
a quite different behavior, in particular exhibiting no real
deconfinement above Tc. In light of this, we are led to con-
clude that only the trivial twist sector and the full ergodic
theory, i.e. summing over all twist sectors, can be consid-
ered good discretizations of Yang–Mills theories: the for-
mer gives the quenched theory, the second the full pure
gauge case. However, many of our results here obtained
for the fixed-twisted case, through the considerations in
Sect. 4, can be used to establish the properties of the er-
godic theory in regimes where sampling the full partition
function would be very expensive in computer time.
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